The Runge-kutta Local Projection Discontinuous Galerkin Finite Element Method for Conservation Laws Iv: the Multidimensional Case
نویسندگان
چکیده
In this paper we study the two-dimensional version of the RungeKutta Local Projection Discontinuous Galerkin (RKDG) methods, already defined and analyzed in the one-dimensional case. These schemes are defined on general triangulations. They can easily handle the boundary conditions, verify maximum principles, and are formally uniformly high-order accurate. Preliminary numerical results showing the performance of the schemes on a variety of initial-boundary value problems are shown.
منابع مشابه
The Runge-Kutta Local Projection Discontinuous Galerkin Finite Element Method for Conservation Laws. IV: The Multidimensional Case Author(s):
In this paper we study the two-dimensional version of the RungeKutta Local Projection Discontinuous Galerkin (RKDG) methods, already defined and analyzed in the one-dimensional case. These schemes are defined on general triangulations. They can easily handle the boundary conditions, verify maximum principles, and are formally uniformly high-order accurate. Preliminary numerical results showing ...
متن کاملTVB Runge-Kutta Local Projection Discontinuous Galerkin Finite Element Method for Conservation Laws II: General Framework
This is the second paper in a series in which we construct and analyze a class of TVB (total variation bounded) discontinuous Galerkin finite element methods for solving conservation laws ut + Ed I(fi(u))xi = 0. In this paper we present a general framework of the methods, up to any order of formal accuracy, using scalar one-dimensional initial value and initial-boundary problems as models. In t...
متن کاملTVB Runge-Kutta Local Projection Discontinuous Galerkin Finite Element Method for Conservation Laws III: One- Dimensional Systems
This is the third paper in a series in which we construct and analyze a class of TVB (total variation bounded) discontinuous Galerkin finite element methods for solving conservation laws II, + zy= ,(f,(u)), = 0. In this paper we present the method in a system of equations, stressing the point of how to use the weak form in the component spaces, but to use the local projection limiting in the ch...
متن کاملThe Runge–Kutta Discontinuous Galerkin Method for Conservation Laws V
This is the fifth paper in a series in which we construct and study the so-called Runge–Kutta discontinuous Galerkin method for numerically solving hyperbolic conservation laws. In this paper, we extend the method to multidimensional nonlinear systems of conservation laws. The algorithms are described and discussed, including algorithm formulation and practical implementation issues such as the...
متن کاملA Discontinuous Galerkin Finite Element Method for Hamilton-Jacobi Equations
In this paper, we present a discontinuous Galerkin finite clement method for solving the nonlinear Hamilton-Jacobi equations. This method is based on the Runge-Kutta discontinuous Galerkin finite element method for solving conservation laws. The method has the flexibility of treating complicated geometry by using arbitrary triangulation, can achieve high order accuracy with a local, compact ste...
متن کامل